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Diffusion of waves in a layer with a rough interface

David H. Berman
Department of Physics and Astronomy, University of Iowa, Iowa City, Iowa 52242

~Received 27 December 1999!

Sound trapped between the rough boundaries of a statistically homogeneous layer can exhibit diffusive
behavior which influences the reverberation of a pulsed signal. If the interfaces of the layer can transmit sound,
then eventually sound within the layer will be lost and there will be no diffusion. Nevertheless, if the trans-
mission to the exterior of the layer is weak, there will be a remnant of diffusion. This paper examines the
description of this kind of quasidiffusive behavior for sound which impinges on the rough interface of such a
layer from outside the layer. As in the case of diffuse light scattering by particles in suspension, the diffusion
constant is renormalized according to the delay required to build up resonant energy in the layer. In addition,
when there is a density contrast between the interior and exterior of the layer, or when there is dispersion, the
diffusion constant has another correction associated with energy flux within the layer.

PACS number~s!: 43.20.1g, 41.20.Jb
ll
al
T
un

e
co
he
ve

re
de
re
ed
e
e
d

i-
i-

s

o
a

rin
h
ffu
v
th
pe
p
b

ha
n
cy
tiv

ery
fre-

pply
he
re-

at,

ant

n
in

local
n
of

t on
then

ace
tant
I. INTRODUCTION

Consider a fluid layer bounded below by an acoustica
impenetrable flat surface and separated from a fluid h
space above by a rough interface, as indicated in Fig. 1.
sound speed and density of the layer differ from the so
speed and density of the half-space. If a point source
sound is located in the half-space near the interface, som
the evanescent waves associated with the source may
cide with what would be normal modes in the layer if t
interface were flat and not rough. How do these wa
propagate and scatter? In a previous paper@1# it was shown
that reverberation from a pulsed source within a laye
waveguide with rough boundaries behaves diffusively,
caying slowly as 1/t in the absence of attenuation. There a
apparently two reasons why this diffusion of process ne
to be treated with more caution, however. The first involv
the role of the time-reversed sequences of scattering ev
that lead to diffusion. These time-reversed sequences lea
enhanced backscattering@2#, on the one hand, and to infin
ties in the computation of the diffusion constant in two d
mensions on the oher hand@3#. For scattering by layers thi
effect was considered by Sa´nchez-Gilet al. @4#. It will not be
treated here. The second reason that diffusion requires m
careful treatment results from resonant scattering. In the c
of scattering by small objects, Kogan and Kaveh@5# pointed
out that if the Boltzmann equation that governs the scatte
is modified to account approximately for the time that lig
spends rattling around within the scatterers, then the di
sion constant will be reduced. In resonant scattering, wa
can spend a sufficient time within the scatterers to alter
diffusion constant significantly. The aim of the present pa
is to examine this effect in scattering by a layer which su
ports normal modes which, when the boundary is rough,
come resonant states.

The discussion given by Kogan and Kaveh@5# of the ef-
fect of resonance on diffusive light scattering is somew
phenomenological. To put things on a firmer foundatio
Barabanenkov and Ozrin considered a frequen
independent dielectric constant. In this case the effec
scattering potential takes the simple formV5e(r )v2/c2, so
PRE 621063-651X/2000/62~5!/7365~16!/$15.00
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that the potential is frequency dependent, although in a v
simple fashion. They noted that because of this simple
quency dependence, and becauseV is local in position@it is
of the form V(r ,r 8)5v(r ,v)d(r 2r 8)#, the Ward identity
expressing energy conservation can be generalized to a
to fields of differing frequencies. This generalization of t
Ward identity to the case of two frequencies leads to a
vised diffusion coefficient. Van Tiggelenet al. @6#, in a com-
ment on the work of Barabanenkov and Ozrin, showed th
in fact, the renormalization of the diffusion constant,D, in
this case is related to the potential energy of the reson
wave which is contained within the scatterers.@5#. Van
Tiggelenet al. obtained their result by careful consideratio
of the expression given by Barabanenkov and Ozrin which
turn is based on the special quadratic dependence of the
‘‘potential’’ on frequency. Though the arguments of Koga
and Kaveh seem to be perfectly general, the methods

FIG. 1. Geometry of scattering by a layer. The densityr2 and
the sound speedc2 are the limiting values ofr(z) andc(z) as the
rough interface is approached from below. Waves are inciden
the rough interface from above, penetrate the interface, and
scatter back and forth between the flat surface atz52H and the
rough interface. The transmission amplitude from the half-sp
above the interface to a half-space below the interface with cons
sound speed and densityc2 andr2 is T2,1(QuK ). Likewise, upward
transmission is described byT1,2(QuK ) and reflection from below
by R2,2(QuK ). Reflection from the imaginary surface atz52h is
described byV(K ), assuming that the medium betweenz52H and
z52h is transversely homogeneous.
7365 ©2000 The American Physical Society
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Barabanenkov and Ozrin and the comment of Van Tigge
et al. seem to be tied to this special model of local dielect
scattering. In the case of acoustic scattering by particles w
a sound speedanddensity differing from their surroundings
their arguments do not seem to work. The situation beco
even less clear when scattering by the interface of a laye
considered. Then the role of the potential is played by
surface admittance, which is a complicated function of f
quency and, more significantly, is a nonlocal function of p
sition. What this means is that when the admittance is e
resed in terms of wave vectors, it is not simply a function
the difference between incoming and outgoing wave vect
It is this aspect of the admittance that prevents applicatio
the methods used by Barabanenkov and Ozrin@7#. Livdan
and Lisyansky@8# also considered the issue of particle sc
tering, and showed that, without using the Ward identity
separated frequencies, a second sort of renormalization o
diffusion coefficient is required, in addition to that consi
ered by Barabanenkov and Ozrin. The purpose of the pre
paper is to show how in the case of acoustic scattering by
interface of a layer, the renormalization of the diffusion co
stant is tied to the potential energy of resonant states wi
the layer. Furthermore, the second renormalization propo
by Livdan and Lisyansky is related to the energy flux with
the layer. In this way the idea of Kogan and Kaveh, that
delay due to the buildup of energy within scatterers can
fect transport properties, is shown to hold in more comp
cated situations than simple local dielectric scattering. T
main result of this work is contained in Eq.~37!, with l0

0

given in Eq.~48!, a in Eq. ~61!, andA in Eq. ~68!.

II. FORMALISM FOR INTERFACE SCATTERING

Maradudin and co-workers wrote numerous papers
ploiting an admittance formalism for surface scatteri
@4,9,10#. The advantage of focusing on the admittance~or
impedance! is that energy conservation is expressed by
simple statement that the admittance operator is Hermitia
is the conservation of energy that leads to diffusion. Anot
advantage of focusing on the admittance is that reflec
amplitudes are then expressed in a form that looks like
resolvent in quantum mechanics, for which there are w
developed techniques for treating multiple scattering.

If waves are incident from above on the interface, fields
the ~upper! half-space can be represented by

c~R,z;K !5exp~ iK•R!exp„2 ib1~K !z…

1E dQ exp~ iQ•R!exp„1 ib1~Q!z…R~QuK !.

~1!

HereK is the horizontal projection of the wave vector of th
incident plane wave. The vertical components of wave v
tors are denoted by

b i~K ![Av2/ci
22K2. ~2!

The sound speed above the interface isc1, and the sound
speedjust below the interface isc2. As will be seen, the
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formalism allows for depth-dependent sound speeds in
layer. If S(QuK )[Ab1(Q)R(QuK )/Ab1(K ), then energy
conservation is expressed by

Q5S†QS2 i ~S†Q̄2Q̄S!, ~3!

where

Q~p!5H 1 if p,v/c1

0 otherwise ,
~4!

andQ̄512Q @11#.
This result accounts for both propagating and evanes

waves.@Note that the term beginning with2 i in Eq. ~3! was
given with the incorrect sign in Ref.@11#.# On a flat surface
z50, just above the highest point of the interface we can
the reflection operator to construct a formal relationship
tween the field and itsz derivative:

]zc~Q,zuK !uz5052E dPY~QuP!c~P,0uK !. ~5!

~The minus sign is chosen according to the convention thY
relates theoutwardnormal derivative to the field itself. At a
lower boundary, the outward derivative is2]z .) The Fou-
rier transform convention used here will be

c~Q,zuK !5S 1

2p D E dRe2 iQ•Rc~R,zuK !. ~6!

The relationship between the reflection operatorR and the
admittanceY is

R5
1

„12~ i /b1!Y…
„11~ i /b1!Y…. ~7!

The order of theb ’s andY’s is important. If ab is located to
the left of aY, it is to be evaluated using the horizontal wa
vector of the left argument ofY, i.e., (b1Y)(K uQ)
5b1(K )Y(K uQ). In the special case of a flat interface atz
50 and a homogeneous layer of densityr2 and sound speed
c2, bounded below atz52H where the field vanishes, th
admittanceY0 is diagonal in wave number, and is given b

Y0~Q!52r1b2~Q!cot„b2~Q!H…/r2 . ~8!

For a slightly rough interface atz50, with roughness speci
fied by z5h(R), the surface height, the first-order deviatio
of the admittance from the flat interface result is

DY~QuK !5ĥ~Q2K !FY0~Q!~12r2 /r1!Y0~K !

1~k1
22Q•K !2

r1

r2
~k2

22Q•K !G ~9!

This result can be obtained from the perturbation results
Ivakin @12#. Note that in previous papers@1# Z51/Y was
used; Maradudin usedY. Also note thatDY is not simply a
function of the wave vector differenceQ2K . It is this fact
that requires a slightly different approach than that used
Barabanenkov and Ozrin.
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The quantity 11R not only appears in the Green functio
above the interface, but also can be cast into the form
surface Green’s function, since

11R522i
1

g0
212y

b1 , ~10!

where

g0
21[2 ib12Y0 ~11!

and

y5Y2Y0 . ~12!

Thus if the moments of

g5
1

g0
212y

~13!

can be found, so can the moments of the scattered fi
exterior to the scattering layer.

Following Maradudin and co-workers@4,9,10#, fluctua-
tions of the Green’s function in the upper half-space
given by
ko

s
rt

e

-

-

a

ds

e

DG~Q,zuK ,z0!5^G&~Q,z,z50!t~QuK !^G&~K ,z50,z0!,

~14!

where

t5
1

12v^g&
v ~15!

and

v5y2M5y2~g0
212^g&21!. ~16!

The self-energyM is the difference between the admittan
of the mean field and the admittance of a flat interface se
rating the two media. This formalism was developed in R
@9#. Because the admittanceY is used rather than the imped
ance,DG in Eq. ~14! involves the average ofG rather than
the derivatives of the average ofG as in Ref.@1#.

The second moment of the scattering operatort, ^tt* &, is
needed to describe intensities and correlations. To be con
tent with Refs.@6,8,13#, let the correlation of the surfac
Green’s functions be given by
FP,K~puV,v!d~p2k![^g~P1p/2,K1k/2,V1v/2!g* ~P2p/2,K2k/2,V2v/2!&, ~17!
the

eter
assuming statistical homogeneity. Following Baranbanen
and Ozrin in Ref.@14# ~but note that the signs here differ! we
use the notation

2iDGP~puV,v!5^g&~P1p/2,V1 i e1v/2!

2^g&* ~P2p/2,V1 i e2v/2!, ~18!

2iDMP~puV,v!5M ~P1p/2,V1 i e1v/2!2M* ~P2p/2,V

1 i e2v/2!, ~19!

and for the scattering operatorU write

UP,P8~quV,v!5DGP~quV,v!KP,P8~quV,v!

2DMP~quV,v!dP,P8 , ~20!

whereK is the irreducible vertex function. In these expre
sions we assume thatV has a small positive imaginary pa
i e, and that the Fourier transform from frequency to tim
follows the convention

f ~ t !5E dv

2p
e2 ivt f̂ ~v!.

In this way, if f̂ is analytic in the upper half complex fre
quency plane,f (t)50 for t,0.

The correlation functionF is determined from the Bethe
Salpeter equation
v

-

~ i /2!@g0,p1q/2
21 ~V1v/2!2g0,p2q/2* 21 ~V2v/2!#Fp,k~quV,v!

2E dp8Up,p8~quV,v!Fp8,k~quV,v!

5DGp~quV,v!dp,k . ~21!

Diffusion is a consequence of energy conservation@7#. In
the present case energy conservation is expressed by
Ward identity@9#. Let S denote the quantity

Sp9~kuV,v!52i E dp8dpUp,p8~kuV,v!Fp8,p9~kuV,v!.

~22!

One form of the Ward identity states thatS is also given by

Sp9~kuV,v!5E dpdp8dq^@yp2q/2,p82q/2
* ~V2v/2!

2yp81q/2,p1q/2~V1v/2!#

3gp1q/2,p91k/2~V1v/2!

3gp82q/2,p92k/2
* ~V2v/2!&. ~23!

This result can be demonstrated from the Bethe-Salp
equation~21! and application of

g0
21g511yg. ~24!

Whenv50 andq50, the Ward identity becomes



of
a

ith
e

ra
is
a

ue
s,

ex

f
t

e

m
n

e

ith
ac

w
th
se

is

n in
al-

un-
the

he
n-

ve

ser-
ng
es
so-
rly
di-

ith
h-
is
To
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E dpUp,p8~0uV,0!50. ~25!

If energy is conserved, theny(V)5y†(V). In the case of
quantum mechanical potential scattering, where the roley
is played by a frequency-independent local potential, the
mittancey takes the form,yp,p8→ v̂(p2p8). This causes the
expression on the right of Eq.~23! to vanish independently
of v. In the case of dielectric scattering by particles w
frequency-independent dielectric constant, discussed in R
@6,8,14#, the role ofy is played byV2/c2e(r ). This means
that yp81q/2,p1q/2(V1v/2)5@(V1v/2)2/c2#ê(p82p), and
that

@yp2q/2,p82q/2
* ~V2v/2!2yp81q/2,p1q/2~V1v/2!#

52~2v/V!yp8,p~V!. ~26!

Hence, ifv50 andkÞ0, Sp9(kuV,0)50. It is this fact that
allows for the simplifications that are described by Ba
banenkov and Ozrin. For acoustic scattering when there
density contrast, or when the dielectric function is non-loc
as in the polariton problem treated by Maradudinet al., Eq.
~26! is not valid. In particular, in these cases, it is not tr
that y is a function only of the difference in wave vector
i.e., yp,p8Þy(p2p8).

Field fluctuations are found from the reducible vert
function t,

^tt* &5t5K1KFK, ~27!

as in Refs.@1,4#. In this paper only the long-time behavior o
correlations is considered; for this purpose it is sufficient
determine the behavior ofF for small v and q. Note that
even if it appears that some contribution toF diverges as the
roughness of the interface vanishes, becauseK vanishes as
the roughness vanishes, the consequences of the diverg
of F for t need not be catastrophic.

III. RENORMALIZATION OF DIFFUSION

The principal results of this section are that the long-ti
behavior of a pulse scattered by a layer with a rough bou
ary is given by Eqs.~36!, ~37!, and~38!. The constant,a is a
renormalization of the diffusion constant,D, and is given in
Eq. ~56!, generally, and reexpressed in terms of modal av
ages in Eq.~61!. The renormalization constantA is given in
Eq. ~68!. The method of Barabanenkov and Ozrin@14# is
adapted to the case of scattering by an acoustic layer w
density and sound speed which differ from the half-sp
above the layer.

Consider Eq.~11! for g0
21:

g0
2152 ib1~Q,V!2Y0~Q,V!.

The flat-interface admittanceY0 is real~as mentioned, if en-
ergy is conserved,Y will be Hermitian!, but the vertical com-
ponent of the wave vector,b1(Q,V), can be real or imagi-
nary. In the former case, waves are free to propagate a
from the interface, in which case there is scattering from
interface by waves incident from above. In the latter ca
d-
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waves decay exponentially from the interface. It is in th
regime that we can look for diffusion within the layer.

One way to deal with the Bethe-Salpeter equation~21! is
to follow the proceedure used by Barabanenkov and Ozri
Refs.@7,14#, and to explore the eigenfunctions and eigenv
ues of the operatorH(q,v) given by

H~q,v!p,p85~ i /2!@g0,p1q/2
21 ~V1v/2!

2g0,p2q/2* 21 ~V2v/2!#dp,p82Up,p8~quV,v!,

~28!

and which appears in Eq.~21!. In terms of H the Bethe-
Salpeter equation becomes

HF5DG.

To determine the echo of a pulse long after it has enco
tered the interface for the first time requires examining
behavior ofF for small frequency differencesv. Since qua-
sidiffusive behavior is expected in this limit as a result of t
pulse rattling within the scattering layer, with the wave e
ergy tending to become uniform, the limitq→0 is also rel-
evant. If there is such rattling around it is because wa
energy within the layer is nearly conserved. Therefore,H
should be approximated in a way that allows energy con
vation to be used explicitly. This is one reason for focusi
on the admittanceY rather than on the scattering amplitud
as in Ref.@15#. The energy that is nearly conserved is as
ciated with modes in the scattering layer which are nea
trapped there. For these reasons, consider the following
vision of the operatorH. Let H5H01DH, with

Hp,p8
0

~q,v!5Q̄~p!~ i /2!@g0,p1q/2
21 ~V1v/2!

2g0,p2q/2* 21 ~V2v/2!#dp,p82Up,p8~quV,v!

~29!

and

DHp,p8~q,v!5Q~p!~ i /2!@g0,p1q/2
21 ~V1v/2!

2g0,p2q/2* 21 ~V2v/2!#dp,p8 . ~30!

In this way the entire irreducible vertex functionU is con-
tained inH0, and the Ward identity can be used to deal w
the eigenvalues ofH0. What happens outside the layer, wit
out considering the coupling to the interior of the layer,
described byDH, and is to be regarded as a perturbation.
treat the smallq andv limit, consider the expansion ofH to
first order inv and to second order inq:

Hp,p8
1

~q,v!5Hp,p8
0

~q,v!2Hp,p8
0

~0,0!

'Q̄~p,V!F2 i
L~p,V!Vv

c2~p,V!

1 iL~p,V!q•pGdp,p82v
]Up,p8

]v8
2q

]Up,p8

]q8

~31!

and
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Hp,p8
2

~q,v!5qiqj

]2H0

]qi]qj
U

q50,v50

. ~32!

In Eq. ~31!,

L

c2
52

] Reg0
21

]V2
~33!

and

L51
] Reg0

21

]p2
. ~34!

For p,V/c1 ,L/c25]Y0 /]V2.0. For the flat-surface ad
mittance used here, one can check thatL/c2 is positive.@By
using a method similar to that used in Appendix A, it can
shown thatL/c2.0 generally. LikewiseL(p,V) is also
positive if g0 depends onp only throughb i .#

The expression forH2 must be taken with a grain of sal
since the nonanalyticity ofb1,2 requires particular care in th
expansion of integrals involvingH2; the issue is that the
limits of integration also depend on momentum. Furth
more,g0

21 has poles as well as zeros. However, sinceg0
21

multiplies g51/(g0
212y) in F5^gg* &, it will be assumed

that the poles ofg0
21 cause no particular problems in th

Bethe-Saltpeter equation.
The solution of the Bethe-Salpeter equation can be wri

in terms of the eigenfunctions and eigenvalues ofH,
fp

m(q,v), and lm(q,v). In the case of scattering by pa
ticles, when energy is conserved,H has an eigenfunction
whose eigenvalue vanishes whenv50 andq50. Diffusion
is determined by the wave vector and frequency depende
of this eigenvalue whenq andv are near zero~the hydrody-
namic limit!. In the present case of a layer coupled to
half-space, energy within the layer is not conserved. Nev
theless there will be an eigenvalue, sayl0(q,v), which be-
comes small in the the hydrodynamic limit, and which wou
vanish if the coupling to the half-space above the layer w
to vanish. We will suppose that the behavior ofF for long
times is controlled by this eigenvalue and the correspond
eigenfunction. Following Barabanenkov and Ozrin, we wr

l0~q,v!'l0
02 ivV~11a!L0 /c0

21Aq2, ~35!

whereL0 andc0 are averages ofL andc defined below. The
time dependence of the reverberant field is then found fr
the Fourier transform@1#,

E dqE dv
exp@2 ivt1 iq•R#

l0
02 ivVL0~11a!/c0

21Aq2

5
2p2c0

2

~11a!V4Dt
exp@2R2/~4Dt !2t/t#, ~36!

with

D5Ac0
2/L0~11a!V ~37!

and
e

-

n

ce

r-

re

g

m

t5L0~11a!V/~c0
2l0

0!5A/~Dl0
0!. ~38!

The remainder of this section is devoted to determining
constantsa andA. Following van Tiggelenet al. @6#, it will
be shown these quantities can be expressed in terms of
tain energylike integrals over the half-spacez.2H.

From the definition ofU and reciprocity ofK, it follows
that H has a symmetry

H~q,v!p,p85H~2q,v!2p8,2p

DG2p~2q,v!

DGp8~q,v!
. ~39!

We will assume that g(2p,V)5g(p,V), so that
DG2p(2q,v)5DGp(q,v). As indicated in Ref.@13# this
means that, in contrast to the usual Hamiltonian in quant
mechanics, the operatorH has distinct left and right eigen
functions. If fp

n(q,v) is a right eigenfunction ofHp,p8 with
eigenvalueln(q,v), then f2p

n (2q,v)/DG2p(2q,v) is a
left eigenfunction with eigenvalueln(2q,v). In fact, these
two eigenvalues are equal, since the symmetry ofH implies

E dpdp8f2p
m ~2q!

1

DG2p~2q!
Hp,p8~q!fp

n~q!

5ln~q!E dpdp8f2p
m ~2q!

1

DG2p~2q!
fp8

n
~q! ~40!

5lm~2q!E dpdp8f2p
m ~2q!

1

DG2p~2q!
fp

n~q!.

~41!

The v dependence has been left implicit here. As usual
the eigenvalues are distinct, the eigenfunctions are ortho
nal with weight 1/DG. The eigenfunctions can be normalize
so that

E dpdp8f2p
m ~2q!

1

DG2p~2q!
fp

n~q!5dn,m . ~42!

Furthermore, it will be assumed that the eigenfunctions
complete. Because of the weighted orthogonality conditi
this means that

(
n

fp
n~q,v!f2p8

n
~2q,v!5DGp~q,v!dp,p8 . ~43!

The correlation functionF is given by

Fp,p85(
n

fp
n~q,v!f2p8

n
~2q,v!

ln~q,v!
, ~44!

and for smallv andq this sum will be dominated by the firs
term with nearly vanishing eigenvalue.
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Because of the Ward identity,

fp
0~0,0!5DGp

0/N5@g~p,V1 i e!2g* ~p,V1 i e!#/~2iN !
~45!

is a right eigenfunction ofH0(0,0) with eigenvalue 0. The
normalization off0 is given byN25*DG0dp. For slightly
rough interfaces,g can be approximated as a sum of po
corresponding to the normal modes of the layer, plus a c
tinuous density of states which propagate in the upper h
space. The location of the poles is slightly shifted, accord
to the self-energyM, from where they are in when the inte
face between the layer and the semi-infinite half-space is
The normal modes associated with the poles must deca
the upper half-space, and so the wave vectors of the p
must satisfykm.V/c1. In addition to the poles there is
contribution toDG0 from waves which propagate in the up
per half-space. In this regime,p,V/c1 , g is continuous and
given by

g~p,V!5Q~p,V!/@2 ib1~p,V!2Y0~p,V!2M ~p,V!#.
~46!

Thus the density of statesDG05(g2g* )/(2i ) becomes

DG0'
Q~Re b11Im M !

@Reb11Im M #21@Y01ReM #2

1(
m

pgmd~p22km
2 !. ~47!

The effect ofDH(0,0) is to perturb the eigenvalue associat
with f05DG0/N; the first-order perturbation of the smalle
eigenvalue is

l0
05

K f0
1

DG0
@Reb1#f0L

E f0
1

DG0
f0

5

E
p,V/c1

dp@b1~p,V!#DGp
0

E dpDGp
0

.

~48!

The eigenvaluel0 is positive so that if 11a.0, the zero of
l0(v) is in the lower-half complexv plane as expected. Fo
small roughness, the eigenvalue is approximated by

l0
0'E dp

~Reb1!2

Y0
21b1

2 Y F E dp
b1Q~p!

Y0
21b1

2
1(

m
p2gmG .

~49!

In any event we suppose that some approximation can
found for l0 andf0.

TreatH1(q,v) as a small perturbation ofH0 parametrized
by the difference wave vectorq and the difference frequenc
v, and which vanishes asq→0 and v→0. Following the
standard Rayleigh perturbation scheme@16#, the perturbation
of the eigenvalue resulting from nonzeroq and v is found
from
n-
lf-
g

t.
in
es

d

be

l0~q,v!2l0~0,0!'

E dpdp8fp
0~0,0!

1

DG0
Hp,p8

1 fp8
0

~q,v!

E dpf0
1

DG0
fp8

0
~q,v!

.

~50!

Of course, the perturbed eigenfunctionfp
0(q,v) is re-

quired if this formula is to be of any use. This situatio
differs slightly from the standard Rayleigh result; when t
operatorH0 is perturbed becauseq and v are nonzero, the
weightDG0 is also perturbed toDG(q,v). Nevertheless the
perturbation procedure described, for example, in Ref.@16#
can be used to give the first-order perturbation of the eig
function df0 as

dfp
0~q,v!52E dp8dp9Fp,p8

reg 1

DGp8
0 Hp8,p9

1
~q,v!fp9

0 .

~51!

The regular contribution to the correlation function,F reg, is

Fp,p8
reg

5 (
nÞ0

fp
n~0,0!f2p8

n
~0,0!

ln~0,0!2l0~0,0!
. ~52!

To determine the coefficient ofv in the expansion ofl0,
again follow Ref.@13# in first settingq50. Then there are
two terms in the perturbation of the operator, one fro
2 iL(p,V)Vv/c(p,V) and another from the perturbation o
the vertex function2v]v8U(q,v8)uq50,v850. These terms
induce a first-order perturbation of the eigenvalue,

l0~0,v!5l02 ivV~11a!L0 /c0
2 , ~53!

where

L0

c0
2

[K f0
L~p,V!

DG0c2~p,V!
f0L Y K f0

1

DG0
f0L . ~54!

This is a positive quantity. The characteristic lengthL0 is
defined as

NL05 lim
q→0

E dp
q•pL~p,V!f0~q!

2 iq2N
~55!

in Eq. ~A31!. It follows from Eqs. ~31! and ~50! that the
constanta in Eq. ~53! is now given by

a52 i „c0
2/~L0V!…K f0

1

DG0
]v8U~q,v8!U

q50,v850

f0L .

~56!

Angular brackets indicate integration over wave vectors,
example,

^f0&[E dpfp
0 . ~57!

In the case of dielectric scattering by small particle
Barabanenkov and Ozrin were able to expressa in a form
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which does not involve the derivative of the vertex functi
U. Van Tiggelenet al. went further, showing thata could be
expressed in terms of the potential energy within the sca
ing particles. However, Livdan and Lisyansky lefta in terms
of ]vU, apparently taking exception to the use of the Wa
identity.

To see how the Ward identity is used, note that
f0 /DG05(1/N)(11g), it follows from Eq. ~25! and the
eigenfunction expansion ofF that

a52
c0

2

2L0VN
lim
v→0

E dp
Sp~0,v!l0~v!

v

1

DGp
0
f01O~vg!.

~58!
g
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The Ward identity@Eq. ~23!# then gives

a5 lim
v→0

lim
q→0

2l0~v!c0
2

2vVL0N2E dpdp8dkdp9^@yp2k/2,p82k/2
* ~V

2v/2!2yp81k/2,p1k/2~V1v/2!#gp1k/2,p91q/2

3~V1v/2!gp82k/2,p92q/2
* ~V2v/2!& ~59!

If y depends only on wave number differences and
pends on frequency only through a quadratic factor, as
dielectric scattering, then Eq.~24! can be used along with
Eq. ~26! to give
h differs
that
a5
c0

2

L0V2
lim
v→0

E dp@g0
21DGp

02^Regp&l
0~v!#Y E dpDGp

0 . ~60!

This result corresponds to Eq.~12! in Ref. @14# for the case of scattering by dielectric particles whenv(r )5(V2/c2)e(r ), and
where the eigenvaluel0 vanishes for smallv. van Tiggelenet al. started from this result to derive an identity expressinga in
terms of the averaged dielectric constant within the particles. For sound scattering from particles or from a layer whic
in both sound speed and density from its surroundings, Eq.~26! cannot be used. However, the results of Appendix A show
the renormalization of the diffusion coefficienta can be written as

a5211
c0

2

L0Nc1
2Ep.v/c1

dpE
0

`

dze22 Im b1(p)zfp
01

c0
2

L0NE dpdkE
2H

2h

dz
re~z,k!2

r~z!c~z!2
ug~k!u2^uT1,2u2&k,p

21fp
0

1 lim
v→0

~2p!2c0
2

L0N2 E dpE
2h

0

dzK c~z,0uV1v/2,p!
r0

r~z!c~z!2
c* ~z,0uV2v/2,p!L l0~v!. ~61!
y

for
trast

he
The last integral expressesa as an average of 1/(rc2) in
the immediate vicinity~betweenz52h and z50) of the
scattering surface;2h is just below the lowest point of the
ensemble of scattering surfaces considered in the avera
In fact, the integral from2H to 2h could be removed, and
the last integral extended to cover the entire scattering la
from z52H to z50. In the integral from2H to 2h the
fields below the lowest point of the scattering surface h
been expanded in modese(z,k) which satisfy the depth
separated Helmholtz equation. Such an expansion allows
to see explicitly that̂ c* c& diverges as 1/l(v) as v→0.
However, such an expansion is only possible forz,2h.

In this way,a is an average ofr1c0
2/„r(z)c2(z)… both over

the scattering layer where the average is weighted by
interior modes, and outside the layer, where the averag
weighted by the decaying portion of these modes. If the
terior decaying modes have amplitude 1, then the co
sponding interior modes have amplitudes 1/T1,2, whereT1,2
is the amplitude for transmission amplitude from inside
es.

r,

e

ne

e
is
-

e-

e

layer~medium 2! to the half-space outside the layer~medium
1!. This is the source of the factors 1/T1,2 in Eq. ~61!. Further
discussion of this result is given in Appendix A. In an
event, this is how the observation made by van Tiggelenet
al., that the renormalization of the diffusiona is the mode
weighted average of the dielectric function, is expressed
layered geometry with both sound speed and density con
across a rough interface.

Now consider the perturbation ofl0 whenv50 andq is
small. To first order inq the perturbationH1 of H0 again
consists of two terms:

Hp,p8
1

5 iL~p,V!q•pdp,p82q•
]Up,p8~q8,0!

]q8
U

q850

.

~62!

For reasons of isotropy, first-order contributions to t
perturbation ofl0 vanish, and second-order~in q) terms
need to be considered. Iff0 is isotropic, then
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Dl~q![l0~q,0!2l0~0,0!'Aq2

5E dpdp8fp
0 1

DGp
0

Hp,p8
1

~q,0!dfp8
0

1K f0
1

DG0
H2f0L

52K f0
1

DG0
H1F reg

1

DG0
H1f0L

1K f0
1

DG0
H2f0L . ~63!

In the case of dielectric scattering, when the dielec
function is independent of frequency, the generalized W
identity holds, and the contribution of the second derivat
of U, contained inH2, vanishes.

H1 is a sum of two terms,H15 iL(p,V)q•pdp,p8
2q(]U/]q), but the four terms that result from
H1F reg(1/DG0)H1 in Eq. ~63! can be rearranged using ide
tity ~B13! to give

Dl~q!'E dpdp8fp
0 1

DGp
0
L~p,V!q•pFp,p8

reg 1

DGp8
0

3L~p8,V!p8•qfp8
0

2E dpL~p,V!

3~q•p!2
] Rê g&

]p2

12K f0
1

DG0
q•

]U

]q
F reg

1

DG0
iq•pLf0L

2K f0
1

DG0
q•

]U

]q
F reg

1

DG0
q•

]U

]q
f0L

1K f0
1

DG0
H2f0L . ~64!

In the case of no density contrast, which is formally the sa
as the case of dielectric scattering without dispersion con
ered by Barabanenkov and Ozrin, the generalized Ward id
tity can be invoked to show that the third and fourth ter
vanish, and that all that remains of the last term is the p
resulting fromg0

212g0*
21, i.e., the part that is peculiar to th

layered geometry considered here.
The first two terms can be compared to Eq.~22! in Ref.

@13#. This result, however, in no way depends on the gen
alized Ward identity. Kogan and Kaveh indicated that t
correction to the diffusion resulting froma is a result of the
time delay associated with resonant wave scattering. Sim
reasoning shows that the correction to the diffusion resul
from the term in]U/]q can be associated with large scatte
ers, so that energy enters the scatterer at one location
emerges at another. In Voronovich’s@15# treatment of scat-
tering in a layer, this nonlocal character of the scatter
shows itself in the appearance of the skip distance.
c
d
e

e
d-
n-
s
rt

r-
e

ar
g
-
nd

g

An alternate way of writing the perturbation ofl for non-
zeroq without invoking identity~B13! is

Dl~q!'K f0
1

DG0
iq•pLdf~q!L

1
iqiqj

4 K f0
1

DG0

]2g0
212g0*

21

]qi]qj
f0L

2K f0
1

DG0
q•

]U

]q
df~q!L

2K f0
1

DG0

]2U

]qi]qj
~qiqj /2!f0L . ~65!

The first term on the right gives the standard result wh
the generalized Ward identity holds. It contains a term in
derivative of U which was described explicitly by Livdan
and Lisyansky@17#, and which became the expression i
volving ] Reg/]p2 in Barabanenkov and Ozrin. From th
definition ofL0 given in Eq.~A31!, asq→0 the first term in
Eq. ~65! becomes

K f0
1

DG0
iq•pLdf~q!L →L0q2. ~66!

The second term on the right of Eq.~65!, which involves
second derivatives ofg0

21, is problematic; it appears to b
divergent. If only pole contributions toDG0 are retained, as
in the work of Sa´nchez-Gilet al. @4#, this term never appears
The divergence arises from wave vectors near grazing,
one can only suppose that these need special treatmen
vestigation of this term will not be attempted here.

The last terms in Eq.~65! can be expressed in terms o
‘‘kinetic-energy-like’’ integrals over the layer using the re
sults of Appendix A,

2K f0
1

DG0
q•

]U

]q
df~q!L

2K f0
1

DG0

]2U

]qi]qj
~qiqj /2!f0L →A1q2, ~67!

whereA1 is given in Eq.~A54!.
Finally, neglecting the problematic terms in]2g0

21,

A5L01A1

51/NE
Q.V/c1

dQE
0

`

dz~Q2/2!e22 Im b1(Q)zBQfQ
0

11/NE dQE
2H

2h

dz~Q2/2!
r1

r~z!
BQ

int~z!fQ
0

1
2L0

2iN
lim
q→0

E dp~2p!2r1E
2h

0

dz@F~zuV,0,p,q/2!

1F* ~zuV,0,p,2q/2!#•q
l~q,0!

q2DGp~q!
fp

0~q!. ~68!
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The integration over2h to 0 could be dropped, and th
last integral could be extended over the entire layer. SincF
is the energy flux whenq→0, it seems that A and the diffu
sion are intimately related to the flux density in the layer, b
the limiting procedures called for make the connection a
obscure.

In contrast to the case of scattering by small particles,
correctionsa andA1 are not small~proportional to the num-
ber density of scatterers!. Rather the ‘‘1’’ in 11a is com-
pletely canceled, as is theL0 in A5L01A1.

IV. SUMMARY

Equations~37!, ~61!, and~68! can be combined to give a
admittedly unwieldy expression for the diffusion constantD.
Likewise, the decay timet follows from Eqs.~38!, ~61!, and
~68!.

The main point of this paper is that connection betwe
the renormalization of the diffusion coefficient and the en
gylike or fluxlike integrals does not depend on the gene
ized Ward identity of Barabanenkov and Ozrin, which ho
only for local dielectric scattering. Furthermore, the seco
renormalization of the diffusion, considered by Livdan a
Lisyansky is also related to energy flux integrals. This
seach is motivated by the observation that simply stated
lationships, such as that discovered by van Tiggelenet al.,
probably have some wide generality, and that the argum
of Kogan and Kaveh seem to capture the essence of w
diffusion.

APPENDIX A

The purpose of this appendix is to demonstrate the c
nection between the quantitySand energylike averages ove
both the interior and exterior of the scattering layer.

Begin by considering a generalized flux within the lay
DefineW by

W~r ,quV,v,K ,k![e2 iq•RFc* ~r uV2v/2,K2k/2!

3
1

r~r !
¹c~r uV1v/2,K1k/2!

2
1

r~r !
¹c* ~r uV2v/2,K2k/2!

3c~r uV1v/2,K1k/2!G . ~A1!

If c is a pressure field, then the corresponding velocity fi
is v52 i¹c/(rv). Thus if k50 and v50, the term in
square brackets is proportional to the energy flux.

These fieldsc depend implicitly on the surface roughne
h(r ), the sound speed within the layer,c(r ), and the density
within the layer,r(r ). If each of these quantities is translate
horizontally by a vectora the fields are likewise translate
and multiplied by a phase factor, so that

c~r uK ,@h~r2a!,r~r2a!,c~r2a!# !

5eiK•ac„r2auK ,@h~r !,r~r !,c~r !#…. ~A2!
t
it

e

n
-
l-
s
d

-
e-

ts
ve

n-

.

d

If there is statistical homogeneity in the horizontal direction
it follows that

^c* ~r uK2k/2!v~r uK1k/2!&

5eik•a^c* ~r2auK2k/2!v~r2auK1k/2!&.

~A3!

This must hold for all horizontal translationsa. In particular,
if a5R, the horizontal projection ofr , then

^c* ~r uV2v/2,K2k/2!v~r uV1v/2,K1k/2!&

5eik•R^c* ~z,R50uV2v/2,K2k/2!

3v~z,R50uV1v/2,K1k/2!&

[eik•RF~zuK ,k,V,v!. ~A4!

The real part ofF(zuKv,0,V,0) is the average energy flu
density.

The strategy for connecting interior fields to surface fie
is to integrate the divergence ofW over the volume of the
layer which extends fromz52H to z50, which is just
above the rough interface between the layer and the h
space above. Then apply Green’s theorem. Assume boun
conditions on the lower surface that insure thatn•W50
there. The average of the divergence ofW is given by

^¹•W&5e2 i (q2k)•RH 2 iq•@ i ~V1v/2!F~zuK ,k,V,v!

1 i ~V2v/2!F* ~zuK ,2k,V,2v!#

2K c* ~z,0!
2Vv

r~z,0!c2~z,0!
c~z,0!L J . ~A5!

The angular brackets indicate averages over all realizat
of h, c, and r. Integrating overdR gives (2p)2d(q2k).
Hence a subsequent integration overq gives

E dRdq^W~0,R!&• ẑ

5~2p!2E
2H

0

dzk•@~V1v/2!F~zuV,vK ,k/2!

1~V2v/2!F* ~zuV,2v,K ,2k/2!#

2~2p!2E
2H

0

dzK c* ~z,0!
2Vv

r~z,0!c2~z,0!
c~z,0!L .

~A6!

Now evaluate the surface integral directly using the de
nition of W and expressing the normal derivatives in term
of the admittance@Eq. ~4!#:
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E dR^W~0,R!&• ẑ

5E dRe2 iq•RK c*
1

r
]zc2

1

r
]zc* c L

5E dRe2 iq•RK 2c*
1

r
Yc1

1

r
Y* c* c L

5E dQdP
1

r
^@Y* ~P2q/2,Q2q/2!

2Y~Q1q/2,P1q/2!#ĉ* ~0,Q2q/2uK2k/2!

3ĉ~0,P1q/2uK1k/2!&. ~A7!

The horizontal Fourier transform of the field in this expre
sion is

ĉ~0,QuK1k/2!5E dR

2p
e2 iQ•Rc~0,RuK1k/2,V1v/2!.

~A8!

Suppose that the field on the surfacez50 is the sum of an
incident plane wave and the corresponding reflected p
waves normalized by the vertical wave number, i.e.,

ĉ~0,QuK !5
d~Q2K !1RQ,K

22ib1~K !
5g~Q,K !. ~A9!

Then the surface integral ofW involves g* g . Noting that
the admittanceY5Y01y is the total admittance and thatS is
expressed, through the Ward identity, in terms of the fl
tuation of the admittancey we can write an alternative resu
for the integral in Eq.~A7!:

E dRdq^W~0,R!&• ẑ

5
1

r
SK~kuV,v!1

1

rE dP@Y0* ~V2v/2,P2k/2!

2Y0~V1v/2,P1k/2!#FP,K~kuV,v!. ~A10!

Equations~A6! and ~A10! together give

SK~kuV,v!

5E dP@Y0~V1v/2,P1k/2!2Y0* ~V2v/2,P2k/2!#

3FP,K~kuV,v!1~2p!2rE
2H

0

dzk•@~V1v/2!

3F~zuV,v,K ,k/2!1~V2v/2!F* ~zuV,2v,K ,

2k/2!#2~2p!2rE
2H

0

dzK c* ~z,0uV2v/2,K

2k/2!
2Vv

r~z,0!c2~z,0!
c~z,0uV1v/2,K1k/2!L .

~A11!
-

e

-

1. Contribution of 1Õrc2

Equation ~A11! suffices to relate the potential energ
„1/(rc2)… and the ‘‘kinetic energy’’p2/2 inside the layer to
the surface quantityS. In this subsection we deal with th
renormalization of the diffusion coefficienta which comes
from the limit v→0 afterq has been set to zero. In Eq.~62!,
a is expressed in terms of

lim
v→0

E dp
Sp~0uV,v!

v

l0~v!

DGp
0

fp
0

5E dp
]Y0~V!

]V
fp

02~2p!2 lim
v→0

E E
2H

0

dzK c* ~z,0uV

2v/2!
2Vr

r~z,0!c2~z,0!
c~z,0uV1v/2!L l0~v!

DGp
0

fp
0dp.

~A12!

In the last expression, if the eigenvalue vanishes asv→0,
then the average ofc* c will diverge as 1/l0, since the long-
time behavior of the fields within the layer must track t
long-time behavior of the fields just outside the layer. As
result, the limit can be nonvanishing even thoughl vanishes.

Use

]Y0~p,V!

]V
512

L~p,V!V

c~p,V!2
1

] Im b1

]V
, ~A13!

which follows from the definition ofL(p,V)/c(p,V)2 in
terms of the derivatives ofg0

2152 ib12Y0, to write the first
integral as

E dp
]Y0~V!

]V
fp

05
2VL0N

c0
2 S 11

c0
2

L0NE dp
] Im b1

]~V2!
fp

0D .

~A14!

Fields that decay away from the surface do so
exp(2Im b1z), and the last integral can be written as thez
integral of the decaying fields using

] Im b1

]~V2!
52

1

2c1
2 Im b1

52
1

c1
2E0

`

dze22 Im b1z.

~A15!

Using this result in Eq.~A12!, and then Eq.~A12! in Eq.
~62!, gives

a5211
c0

2

L0NEp.V/c1

dpE
0

`

dz
1

c1
2

e22 Im b1(p,V)zfp
0

1
~2p!2c0

2

L0N E dpE
2H

0

dzK c* ~z,0uV2v/2,p!

3
r

r~z,0!c2~z,0!
c* ~z,0uV2v/2,p!L l0~v!

DGp
0

fp
0 .

~A16!
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In this way a is a field-weighted average of 1/(rc2)
within and outside the scattering layer. In the last integ
the limit v→0 is understood, and one needs to assume
sincec(z,R50uV6v/2,p) is driven by its value on the sur
facez50, namely,„1/(2p)…*dQg(Q,p), that the correlation
function ^c* c& will diverge asv→0 in the same way tha
F5^gg* & diverges, i.e., as 1/l0(v). It is possible to see
how this can happen by expressing the fields beneath
lowest excursions of the scattering surfaces~in the regionz
<2h) in terms of fields which satisfy the depth-separa
wave equation
1
in

he

n

re
l,
at

he

d

d

dz

1

r~z!

d

dz
e~z,Q!52

1

r~z! S V2

c~z!2
2Q2D e~z,Q!,

~A17!

with boundary conditions

e~2H,Q!50 ~A18!

and

d

dz
e~z,Q!uz52H51. ~A19!

Then the fieldsc can be written
c~z,RuV,K !5
1

2pE dQ exp~ iQ•R!e~z,Q!a~QuK !/„22ib1~K !… ~A20!

for 2H<z<2h. The functionsa(QuK ) are simply the expansion coefficients ofc in terms of the basis functionse. The
factor 1/(22ib1) is made explicit becauseg5(11R)/(22ib1).

In the usual fashion, statistical homogeneity means that we can write

^a~p1q/2uV1v/2,p81q8/2!a*

3~p2q/2uV2v/2,p82q8/2!&

5Gp,p8~quV,v!d~q2q8!. ~A21!

If the density and sound speed within the layer are independent of surface statistics, then

lim
v→0

K c* ~z,0uV2v/2,p!
r

r~z,0!c2~z,0!
c* ~z,0uV2v/2,p!L l0~v!

5 lim
v→0

E dq

~2p!2
e~q,z!2K r

r~z,0!c2~z,0!
L Gq,p~0uV,v!l0~v!/4b1~p,V1v/2!b1* ~p,V2v/2!. ~A22!
nd
y-
the

s

he
The next issue to resolve is howG is related toF. R is the
netscattering amplitude from medium 1 back into medium
The net field scattered is the result of multiple scatter
between the rough interface and the~possibly refracting!
layer bounded below atz52H, which will now be de-
scribed.

Betweenz52h and the rough interface assume that t
density and sound speed are constant~see Fig. 1!. A plane
wave which is incident from above on the layer betweez
52h and z52H from a semi-infinite half-space withc
5c2 andr5r2 is reflected with an amplitudeV(Q), so that
the total field associated with the plane wave is

fpw~z,RuQ!5@exp„2 ib2~Q!…z

1exp„ib2~Q!…V~Q!#exp~ iQ•R!.

~A23!

These fieldsfpw can be used as a basis to write the scatte
field in the presence of the rough interface as
.
g

d

c~z,RuK !5„1/~2p!…E dQ exp~2 iQ•R!

3@exp„2 ib2~Q!z…1exp„ib2~Q!z…V~Q!#

3T~QuK !/22ib1~K !. ~A24!

This expansion is only valid between the rough interface a
z52h. In fact, one would have to invoke the Rayleigh h
pothesis to use this expansion up to the lower side of
rough interface. The expansion coefficientsT(QuK ) will be
described below.

The field f(z,RuQ), which is the continuation of the
plane wave statefpw into the transversely homogeneou
layer below z52h, must be a multiple of
exp(iQ•R)e(z,Q):

f~z,R!5exp~ iQ•R!e~z,Q!g~Q!. ~A25!

Continuity of the field and its normal derivative across t
imaginary surface atz52h determine both the reflection
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coefficientV(Q) and the ‘‘transmission’’ coefficientg(Q).
The ratio (d/dz)e(z,Q)uz52h /e(2h,Q)5A(Q) is the ad-
mittance of the surfacez52h, andV is given by

V~Q!5exp„i2b2~Q!h…
11A~Q!/ ib2~Q!

12A~Q!/ ib2~Q!
. ~A26!

The ‘‘transmission coefficient’’g is then given by

g~Q!5@exp„ib2~Q!h…1exp„2 ib2~Q!h…V~Q!#/e~2huQ!.

~A27!

It follows that in Eq.~A20!,

a~Q!5g~Q!T~QuK !. ~A28!

Now express the net reflection amplitudeR in terms of T.
The reflection amplitudeR(QuK ) is the result of the initial
encounter with the interface, described byR1,1(QuK ) plus
whatever part of the upgoing waves in selvage region2h
,z,h(R) is transmitted by the interface. The amplitude
the upgoing waves isV(P)T(PuK ) from Eq. ~A24!, and the
portion that is transmitted up into medium 1 with wave ve
tor Q is *dPT1,2(QuP)V(P)T(PuK ). Hence the net reflection
amplitude is given by

R~QuK !5R1,1~QuK !1E dPT1,2~QuP!V~P!T~PuK !.

~A29!

On the other hand, the downgoing waves in the selv
region @whose amplitudes areT(QuK ) in Eq. ~A24!# are the
result of transmission of the plane wave incident from abo
@described byT2,1(QuK )# plus the internal reflection of the
upgoing waves in the selvage region, described
*dPR2,2(QuP)V(P)T(PuK ). It follows thatT satisfies

T~QuK !5T2,1~QuK !1E dPR2,2~QuP!V~P!T~PuK !.

~A30!

The formal solution of this equation is

T5
1

12R2,2V
T2,1. ~A31!

Using this result in Eq.~A29! gives

11R511R1,11T1,2V
1

12R2,2V
T2,1511R1,11T1,2VT.

~A32!

Only the last term involves multiple scattering. In the hydr
dynamic limit, we neglect the single-scatter contribution, a
write the the surface correlation function~schematically! as

F5^gg* &'^~T1,2VT!~T1,2VT!* &/~4b1b1* !. ~A33!

Following Voronovich@15#, we argue that the essence of t
ladder approximation, the primary ingredient of the Beth
Salpeter equation, is the assumption of uncorrelated suc
sive scattering events. The same assumption can be us
factor the average on the right of the previous equation, g
ing
f

-

e

e

y

-
d

-
es-

to
-

F'^T1,2T1,2* &VV* ^TT* &/~4b1b1* !

5^T1,2T1,2* &
1

gg*
GY ~4b1b1* !. ~A34!

The last line follows because it is assumed thatVV* 51,
which is the case, for example, whenV52exp(2ib2H). Fur-
thermorê aa* &5G5gg* ^TT* &. Let ^uT1,2u2&21 denote the
operator inverse of̂T1,2T1,2* &. Then the correlation function
of T can be written

G/~4b1b1* !5gg* ^T1,2T1,2* &21F, ~A35!

and the correlation of fields within the layer belowz52h
can be written for smallv as

K c* ~z,0uV2v/2,p!
r

r~z,0!c2~z,0!
c* ~z,0uV2v/2,p!L

5E dq

~2p!2
e~z,q!2ug~q!u2

r

r~z,0!c2~z,0!

3^uT1,2u2&q,p8
21 Fp8,p~0uV,v!dp8. ~A36!

Combining Eqs.~A36! and~A16! and the eigenvalue expan
sion of F yields Eq.~61! of the text. The eigenfunctionf0

represents a certain incoherent distribution of wave vect
The two integrals in Eq.~61! are averages inside and outsid
the layer ofrc0

2/r(z)c(z)2.

2. Contribution of p2

The constantA in Eq. ~30! for the eigenvaluel(q,v) is
determined from

A5 lim
q→0

Dl~q,0!

q2
, ~A37!

with Dl(q,0) given by Eq.~65! of the text. The aim of this
section is to determine the contributionA1 to A from the last
two terms of Eq.~65!. Analogously to Eq.~62! for a, this
contribution toA can be expressed in terms ofS and then,
using Eq.~A11!, in terms of depth integrals.

From the definition ofS @Eq. ~27!# and the eigenfunction
expansion ofF @Eq. ~48!#, it follows that

A15
21

2iN
lim
q→0

E dp
Sp~quV,0!

q2

l~q,0!

DGp
0~q!

fp
0~q!,

~A38!

in the same way that Eq.~62! follows from Eq.~60!. On the
other hand, Eq.~A11! for v50 andq→0 gives

Sp~quV,0!5E dp8
]Y0~V,p8!

]p8
Fp8,p~q!

1~2p2!r1E
2H

0

Vq•@F~zuV,0,p,q!

1F* ~zuV,0,p,2q!#. ~A39!
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Let A1
Y be the contribution toA1 from the first integral inS,

i.e., the contribution ofY0. Following steps analogous t
those leading from Eq.~A11! to Eq. ~A15!, we write

q•
]Y0

]p
52q•p

]Y0

]p2
52q•pF2L~p,V!1

] Im b1

]p2 G .

~A40!

Then, using the eigenfunction expansion ofF, the contribu-
tion A1

Y can be written

A1
Y5

21

N
lim
q→0

E dp
q•p

iq2 F2L~p,V!1
] Im b1

]p2 Gfp
0~q!.

~A41!

The first integral is a wave-vector average ofL, and moti-
vates the definition

NL05 lim
q→0

E dp
q•pL~p,V!

2 iq2
fp

0~q!. ~A42!

Using this definition and

] Im b1

]p2
5

1

2 Imb1
5E

0

`

dze22 Im b1z, ~A43!

A1
Y becomes
A1
Y52L02 lim

q→0

1

NE dpE
0

`

dze22 Im b1z
q•p

iq2
dfp

0~q!.

~A44!

Following Livdan and Lisyansky@8# and others, we write the
perturbation of the eigenfunction in the form

dfp
0~q!52 iq•pBpfp

0~0!, ~A45!

so that

A1
Y52L01

1

NE dpE
0

`

dz~p2/2!e22 Im b1zBpfp
0

~A46!

and

L05E dp~p2/2!L~p,V!Bpfp
0Y E dpfp

0 . ~A47!

Recall thatL(p,V).0, so that ifBp is positive, as will be
assumed, thenL0 is positive.

Now treat the contribution toA1 that comes from the
integral of F in S. Follow the steps that yield Eq.~A24!.
From the definition ofF andv and Eq.~A17!, for z,2h, F
is given by
F~zuK ,k,V,0!5K E dQ1dQ2

~2p!2
e2 iQ2•Re* ~z,Q2!a* ~Q2uK2k/2!/@2ib1* ~K2k/2!#

3
Q1

r~z!V
eiQ1•Re~z,Q1!a~Q1uK2k/2!/@22ib1~K1k/2!#L U

R50

5E dQ

~2p!2
e* ~z,Q2k/2!e~z,Q1k/2!GQ,K~k!

Q1k/2

r~z!V4b1~K1k/2!b1* ~K2k/2!
, ~A48!

where sum and difference variablesQ5(Q11Q2)/2 andq5Q12Q2 have been substituted forQ1 andQ2. It is straightfor-
ward to show that

GQ,P~2q!* 5GQ,P~q!, ~A49!

and then that

Vq•@F~zuP,q,V,0!1F* ~zuP,2q,V,0!#

5E dQ

~2p!2
e~z,Q1q/2!e~z,Q2q/2!2Q•qGQ,P~q!/@4r~z!b1~P1q/2!b1~P2q/2!* #. ~A50!

With this result, the contributionA1
F of the terms inS which involveF in the region2H,z,2h to A1 becomes

A1
F5 lim

q→0

21

N E
2H

2h

dzE dpE dQ
re~z,Q1q/2!e~z,Q2q/2!* q•Q

iq2r~z!
GQ,P~q!

l0~q!

4b1~P1q/2!b1~P2q/2!* DGP
0~q!

fP
0~q!.

~A51!

To obtain to an expression forA1
F which is analogous to the result forA1

Y in thatl0 is eliminated, we again use Eq.~A35!
and the eigenfunction expansion ofF, but now for nonzeroq:
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A1
F5 lim

q→0

21

N E
2H

2h

dzE dPE dQ

3
re~z,Q1q/2!g~Q1q/2!e~z,Q2q/2!* g~Q2q/2!* q•Q

iq2r~z!

3@1/V~Q1q!V* ~Q2q!#^T1,2T1,2* &Q,P
21 ~q!fP

0~q!. ~A52!
ec
x-

th

n.
en

he

self-
Now, however, it is awkward to take theq→0 limit of
ee* gg* /(VV* )] ^T1,2T1,2* &21f0(q). Instead, we simply
write

lim
q→0

E e~z,Q1q!e* ~z,Q2q!gg*
1

VV*

3^T1,2T1,2* &Q,P
21 ~q!fP

0~q!dP

51 iq•QBQ
int~z!fQ

0 ~0!1O~q2! ~A53!

for small q. In this wayA1 is shown to be given by

A15A1
Y1A1

F

5L0H 2111/~NL0!

3E dpE
0

`

dz~p2/2!e22 Im b1(p)zBpfp
0

11/~NL0!E dQE
2H

2h

dz~Q2/2!
r

r~z!
BQ

int~z!fQ
0 J

1
21

2iN
lim
q→0

E dp~2p!2r1E
2h

0

dz@F~zuV,0,p,q/2!

1F* ~zuV,0,p,2q/2!#•q
l~q,0!

q2DGp~q!
fp

0~q!. ~A54!

If the selvage region is small, it may be possible to negl
the last integral. Alternatively, it may be just as well to e
tend the last integral to the region2H,z,0, and drop the
term involving the functionsBQ

int(z).

APPENDIX B

The purpose of this appendix is to establish Eq.~64! of
the text. The main ingredient in the demonstration is
symmetry expressed by Eq.~39!. For smallq andv50 this
symmetry implies

dS 1

DGp~q! DHp,p8
0

1
1

DGp~0!
Hp,p8

1
~q!

5dS 1

DG2p8~2q!
D Hp8,2p

0
1

1

DG2p8~0!
H2p8,p

1
~2q!,

~B1!
t

e

where d@1/Gp(q)# is the first-order ~in q) variation of
1/Gp(q). Note thatGp(q)5G2p(2q) and thatfp

05f2p
0 ,

but that, in general,fp
mÞf2p

m for mÞ0. These symmetries
mean that

K f2p
m 1

DGp
0

Hp,p8
1

~q!fp8
0 L

5K f2p
m 1

DG2p8
0 H2p8,2p

1
~2q!fp8

0 L
2 K f2p

m dS 1

DGp~q! DHp,p8
0 fp8

0 L
1K f2p

m dS 1

DG2p8~2q!
D H2p8,2p

0 fp8
0 L .

~B2!

The first term on the right can be rewritten as

K f2p8
0 1

DG2p8
0 H2p8,2p

1
~2q!f2p

m L
5K fp8

0 1

DGp8
0 Hp8,p

1
~2q!fp

mL ~B3!

because of the inversion symmetry off0, and because the
various p’s are really just dummy variables of integratio
The third term can be manipulated similarly, and wh
H0fm5lmfm is used, the result is

K f2p
m 1

DGp
0

Hp,p8
1

~q!fp8
0 L

5K fp8
0 1

DGp8
0 Hp8,p

1
~2q!fp

mL
1~lm2l0!K f2p

m dS 1

DGp~q! Dfp
0L . ~B4!

In the usual scheme~quantum mechanics!, the weight func-
tion DG is replaced by 1, and there is no equivalent of t
last term which involves the variation ofDG with q. In that
case, equivalence of the first two terms expresses the
adjoint character ofH. It is the variation ofDG that changes
matters here.
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Equation~64! of the text follows from Eq.~B4! and the
definition of the regular part ofF,

Fp,p8
reg

5 (
mÞ0

fp
mf2p8

m

lm2l0
. ~B5!

Let

J5K f0
1

DG0
A~q!F req

1

DG0
H1~q!f0L , ~B6!

whereA is any operator diagonal inp, e.g.,

Ap,p8~q!5Ap~q!dp,p8 . ~B7!

For the purposes of this paper we use

Ap~q!5 iq•pL~p,V!. ~B8!

Use Eq.~B5! to replaceF reg in Eqs. ~B6! and ~B4! to
replace^fm(1/DG0)H1f0&. Then note that in the sum ove
states which no longer containslm2l0 the m50 term can
be added freely since in fact isotropy causes it to van
Applying the completeness relation

(
m

fp
mf2p

m 5DG0dp,p8 ~B9!

then gives the desired result

J5K f2p
0 1

DG2p
0

Ap~q!DGp
0dS 1

DGp~q! Dfp
0L

1K f2p8
0 1

DGp8
0 Hp8,p

1
~2q!Fp8,p9

reg 1

DGp9
0 Ap9~2q!fp9

0 L .

~B10!

Isotropy dictates thatFp,p8
reg depends only onupu,up8u and

p•p8. The appearance ofAp9(2q) results from

K fp
0 1

DGp
0

Ap~q!fp
mL 5K f2p

m 1

DG2p
0

A2p~q!f2p
0 L

5K f2p
m 1

DGp
0

Ap~2q!fp
0L .

~B11!
I.

,

h.

The dummy variable infp
m needs to be changed to2p,

because it isf2p
m that appears inF reg.

The first order variation of 1/DG is given by

d
1

DG~q!
52S 1

DG0D 2

dDG~q!52S 1

DG0D 2

iq•p
] Reg

]p2
,

~B12!

so that

J5K f0
1

DG0
A~q!F reg

1

DG0
H1~q!f0L

52K f2p
0 1

DG2p
0

Ap~q!iq•p
] Reg

]p2

1

DGp
0
fp

0L
1K f2p8

0 1

DGp8
0 Hp8,p

1
~2q!Fp8,p9

reg 1

DGp9
0 Ap9~2q!fp9

0 L .

~B13!

Equation~67! for Dl(q) can be written as

Dl~q!52K f0
1

DG0
AF reg

1

DG0
H1~q!f0L

1K f0
1

DG0
q•

]U

]q
F reg

1

DG0 FA2q•
]U

]q Gf0L
1K f0

1

DG0
H2f0L . ~B14!

If identity ~B13! is used in the first term, the perturbation
the eigenvalue,Dl(q), is shown to be given by Eq.~65! of
the text.
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